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Abstract. The generalization ability of an extremely dilute feedback neural network with multi-
state neurons is studied by means of a deterministic noiseless parallel dynamics. The overlap
with any one of a macroscopic number of binary, full activity, concepts is determined when the
network is trained with examples of variable activity according to a Hebbian learning algorithm
that favours stable symmetric mixture states. Explicit results about the phase diagram and the
generalization error are obtained for a network with three-state neurons which remain inactive
below a thresholdθ . It is shown that the generalization ability can be considerably enhanced
either by training the network with low-activity examples or by means of a moderate increase
in θ .

1. Introduction

The spontaneous emergence of features that were not originally built into a neural network
during its learning stage, known as the generalization (or rule extraction) ability, has been
a subject of much interest in recent years [1]. The categorization problem, in which
individuals, or examples, are grouped into classes is a particular kind of generalization
[2–4]. The process of creating a representation for concepts involves the extraction of
common information from the activity patterns to which the network has been exposed
during the learning stage and it is now known that, in attractor neural networks, this can be
achieved through the presence of stable symmetric mixture states with the stored patterns
[5–7].

Most of the works on generalization in attractor neural networks deal with the Hopfield
model with two-state (firing or not firing) neurons. On the other hand, interesting features
concerning the retrieval performance appear in networks with multi-state neurons that are
active beyond a threshold [8–14]. In the case of training with full-activity patterns, a
finite threshold below a certain limit tends to turn off those neurons which cause errors,
allowing for a moderate increase in the storage capacity. When the network is trained with
low-activity patterns, instead, in which there is a finite fraction of zero neurons, a careful
selection of the threshold can lead to a drastic increase in the storage capacity [9]. It has
also been found that such networks have strong inferential properties. Indeed, patterns of
full activity, so-calledlarge patterns, can implicitly be stored through the merging of low-
activity (that is,small) prototype patterns, via the action of mixture states [8, 9]. On the other
hand, since symmetric mixture states can be used to characterize the generalization phase,
one may ask if the inferential properties of a network could not be used to enlarge this phase

0305-4470/96/040749+13$19.50c© 1996 IOP Publishing Ltd 749



750 D R C Dominguez and W K Theumann

and to enhance the generalization ability. In its simplest form, this ability is determined
by the generalization error associated with a given concept. This error is defined as the
Hamming distance between the concept and the asymptotic state of the network.

Multi-state neurons are interesting from various points of view. One is the recognition of
pictures from different levels of grey-toned patterns. Another is the biologically motivated
analogous neural network with a continuous gain function [15–17]. On the other hand,
discrete multi-state neurons could be of interest for hardware implementations.

It should be of considerable interest, therefore, to study the generalization ability of an
attractor neural network with multi-state neurons. An attempt in that direction has been
made recently for an analogous network that creates a representation for a single concept
from a finite set of full activity patterns that act as examples [18]. Here we consider the
more interesting situation in which a representation for a macroscopic number of concepts
of full size is created in a network that learns from a set of examples of low activity [9].
Since we have to deal with a large parameter space, we restrict ourselves to a network
in the extremely dilute limit which yields an exact dynamical description for all times or,
alternatively, an approximate one-step dynamics for the fully connected network [19].

It will be shown that, in the case of the three-state network, the generalization ability
can be considerably improved by training the network with examples of low activity in
place of full activity. A slight gain in the performance can then be obtained through a small
increase in the threshold. If the network is trained, instead, with examples of moderate-to-
large activity, the generalization ability is considerably reduced, although an increase in the
threshold can then lead to an improvement of the result.

The outline of the paper is the following. In section 2 we introduce the model and
the relevant parameters; in section 3 we discuss briefly the dynamics for the generalization
problem to make clear the distinction with the retrieval dynamics. We present there formal
results for any transfer function and discuss the explicit results for the three-state case
with either low or full activity examples in section 4. We end with concluding remarks in
section 5.

2. The model

Consider a network ofN neurons in the extremely dilute limit in which each neuron is
connected, on average, withC � logN (C � 1) randomly chosen other neurons through
the synaptic couplingsJij , between neuronsi andj . The parallel dynamics for this network
can be solved exactly, in that the first time step describes the full evolution of the network
for all later times [19].

We take theJij to be given by a generalized Hebbian rule:

Jij = Cij

C

p∑
µ

s∑
ρ

ξ
µρ

i ξ
µρ

j (1)

where{Cij } is a set of random independent parameters that take the value 1 with probability
C/N and zero with probability 1− C/N , in which Cij is independent ofCji and, thus,
the Jij are asymmetric. The network learns from a set{ξµρ

i ; µ = 1, . . . , p; ρ = 1, . . . , s}
of random independent examples of each conceptξ

µ

i that takes the values±1, with equal
probability, and we assume, for simplicity, that the concepts are uncorrelated. Specifically,
we set

ξ
µρ

i = ξ
µ

i λ
µρ

i (2)
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where λ
µρ

i = ±1 or 0, on an active or passive site, respectively, belongs to a set of
independent random microscopic activities with probability distribution

p(λ
µρ

i ) = a − b

2
δ(λ

µρ

i + 1) + (1 − a)δ(λ
µρ

i ) + a + b

2
δ(λ

µρ

i − 1) (3)

with a > b, whereδ is the Kronecker delta.
The first moment ofλµρ gives the correlation

b ≡ 〈ξµρ

i ξ
µ

i 〉 (4)

between an example and the concept to which it belongs, while theactivity of an example,

a ≡ 1

N

∑
i

(ξ
µρ

i )2 (5)

is given by the second moment ofλµρ , in the N → ∞ limit. Note that Ne = aN may
be regarded as the effective size of the learned examples, and we refer to these assmall
patterns whenevera < 1. It follows from equations (2) and (3) that the correlation between
two examples of the same concept is given by〈ξµρξµζ 〉 = b2, if ρ 6= ζ , while examples of
a given concept will not be useful in creating other concepts since〈ξνξµρ〉 = 0, if ν 6= µ.

Thus, the examples that are used in the training stage are biased with the conceptsξµ

and the learning rule given by equation (1) is the most suitable and simple Hebbian-type
rule that does not suppress the symmetric mixture states that characterize the generalization
phase in our problem. This is in contrast with the retrieval problem, where the unwanted
symmetric mixture states can be suppressed by the choice of an appropriately modified
learning rule [20, 21].

The relevant parameters describing the performance of the network are the following
[5, 22]. First, the overlap of the stateσi(t) with exampleξ

µρ

i is defined as

m
µρ

N (t) = 1

N

∑
j

ξ
µρ

j σj (t) (6)

which remains bounded betweena and−a asξ
µρ

j = ±σj . Next, the generalization overlap
with conceptξµ is given by

M
µ

N(t) = 1

N

∑
i

ξ
µ

i σi(t) (7)

which yields the generalization error defined as

εµ = 1

2N

∑
i

|ξµ

i − σi(t)| = (1 − M
µ

N)/2. (8)

Finally, thedynamical activity[9]

Q(t) = 1

N

∑
i

[σi(t)]
2 (9)

plays a crucial role in determining the generalization and chaotic phases, the latter being
analogous to a spin-glass phase in a fully connected network. We allow for a finite, non-
zero, capacityα = p/C of generated concepts, in the large-p and large-C limits, where
C/N is the fraction of uncut synapses of the model and we restrict ourselves, for simplicity,
to a noiseless (zero-temperature) parallel dynamics.
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3. The dynamics

The zero temperature, parallel, dynamics of the network yields the stateσi(t + 1) of neuron
i at time t + 1 through

σi(t + 1) = Fθ [hi(t)] (10)

whereFθ(x) is an odd transfer function of the local field

hi(t) =
∑
i 6=j

Jij σj (t) (11)

at time t . Here,θ could represent a series of thresholds for a discrete function or a gain
parameter in the continuum case. For instance,Fθ(x) could be one of the multi-state
functions considered recently [12–14] or a graded response function such as tanh(x/θ)

[15, 18]. Explicit results will be obtained for the three-state case,σi = 1, 0, −1, where
[8–11]

Fθ(x) =
{

sign(x) |x| > θ

0 |x| 6 θ .
(12)

Since the concepts are uncorrelated, we concentrate on the properties of conceptµ = 1.
In the case of binary conceptsξ1

i = ±1, it is convenient to introduce the new stateτi(t)

and the new field3i(t),

τi(t) = ξ1
i σi(t) 3i(t) = ξ1

i hi(t) (13)

in terms of which the evolution of the states, equation (10), becomesτ(t + 1) = Fθ [3(t)]
with the site-dependence being implicit here and in what follows.

In the large-N and large-C limits we may write

3(t) = �(t) + ω(t) (14)

where

�(t) =
∑

ρ

λ1ρmρ(t) (15)

is the part of the local field that favours ordering with the conceptµ = 1, in which
mρ(t) = lim m

1ρ

N (t) asN → ∞, is the overlap that characterizes the phase of interest. For
the retrieval of a particular example, sayρ = 1, mρ = mδρ,1, whereas the overlap that
characterizes the generalization phase is the symmetric one ofs components defined below.
The second term,

ω(t) = lim
C,N→∞

ξ1
i

∑
ν>1,ρ,j 6=i

Cij

C
ξ

νρ

i ξ
νρ

j σj (t) (16)

is the noise in the local field due to the presence of the otherp − 1 concepts. This noise
will be finite wheneverα = p/C 6= 0.

The sum over sites in equation (6), forµ = 1, becomes then in the limitN → ∞, due
to the law of large numbers,

mρ(t) = 〈〈λ1ρτ (t)〉�〉ω (17)

where the brackets denote averages over the probability distributions for the components
of the local field. It should be noted that, through its dependence on3(t), the new state
variableτ(t) is a function of the full set{λ1δ}, each member of which is correlated toλ1ρ ,
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so that the average over the latter cannot be done separately from that overτ(t). Similarly,
the generalization overlap becomes

M(t) = lim
N→∞

M1
N(t) = 〈〈τ(t)〉�〉ω. (18)

The fully symmetric overlap of the state of the network with the examples, given by

mρ(t)/b = m(t) ρ = 1, . . . , s (19)

characterizes the generalization phase and enables the network to extract the common
features of the training examples in the generalization process. From equations (15) and
(19) one finds that

�(t) = γm(t)xs (20)

in which γ = sb2 and wherexs is (for s > 10) approximately a Gaussian random variable
with mean〈xs〉 = 1 and variance Var(xs) = (a − b2)/γ , while

m(t) = 〈〈xsτ (t)〉xs
〉ω. (21)

On the other hand, the noise term turns out to be given by

ω(t) = zp

√
αrQ(t) (22)

wherezp
.= N(0, 1) is distributed (

.=) according to a Gaussian random variable with mean
zero and unit variance. Here,α = p/C is the capacity of generated concepts, while

r = s[a2 + (s − 1)b4] (23)

andQ(t) is the dynamical activity, given by

Q(t) = 〈〈τ 2(t)〉xs
〉ω (24)

in the large-N limit. Higher moments ofω are of orderN−2 and, hence, vanishingly small
in this limit.

Now summing both Gaussians in equations (20) and (22), the local field becomes

3(t) = γm(t) + zV (t) (25)

wherez
.= N(0, 1) is also a Gaussian random variable with zero mean and unit variance,

and

V (t) = [(a − b2)γm2(t) + αrQ(t)]1/2. (26)

The one-step recursion relations for the dynamics, for any odd transfer functionFθ(x),
are then

m(t + 1) = M(t + 1) + m(t)(a − b2)C(t + 1) (27)

where

M(t + 1) = 〈Fθ [3(t)]〉z (28)

andC(t +1) = 〈F ′
θ [3(t)]〉z is related to the spin-glass order, in whichF ′

θ (x) = dFθ(x)/dx.
The dynamical activity is given by

Q(t + 1) = 〈{Fθ [3(t)]}2〉z. (29)

The fixed-point solutions of these equations solve exactly the dynamics of the network
in the extremely dilute limit for all times after an initial step. Since the search for the
fixed-point solutions becomes quite complex in the general case, in terms ofa, b, s, θ and
α as well as the dependence on the shape ofFθ(x), we specialize in the following to the
three-state case.
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4. Results: the three-state neuron

The fixed-point equations form = m(t), M = M(t), Q = Q(t) andC(t) = C are, together
with equation (27),

M = 1
2[erf(A+/

√
2) + erf(A−/

√
2)] (30)

Q = 1 − 1
2[erf(A+/

√
2) − erf(A−/

√
2)] (31)

and

C = 1

V
[ϕ(A+) + ϕ(A−)] (32)

with ϕ(x) = 1√
2π

e−x2/2,

erf(x/
√

2) = 2
∫ x

0
dz ϕ(z) (33)

and

A+
− = 1

V
(mγ ± θ). (34)

The dependence on the parametersa, b ands is implicit in V , the fixed-point value ofV (t).
At this point it is interesting to note the correspondence between our equations for the

generalization problem, with the equations derived by Yedidia [9] for the retrieval problem
in the extremely dilute network. This correspondence helps to understand the phase diagram
for α as a function ofθ that we obtain below. Indeed, asa andb → 0 for s → ∞, such
that sa2 and γ = sb2 are finite, the dominant contribution toV (t), equation (26), comes
from the last term. Also,m(t + 1) in equation (27) reduces toM(t + 1) in this limit and
we find that

A+
− = M ± θ̂√

α̂Q
(35)

where θ̂ = θ/γ and α̂ = α[1 + sa2/γ 2] can be viewed as the effective threshold and
ratio of generated concepts, respectively. Our equations for the generalization overlapM

with binary concepts and forQ become then the equations of Yedidia for the retrieval
overlapm and the dynamical activity, whena = 1. For general values of the activitya, the
correlation parameterb and the number of exampless, our equations are, however, more
complex than those of the retrieval problem. The important point of this correspondence is
that it illustrates that there should be generalization even if the activity and the correlation
between examples are very small.

In order to obtain extensive results, we first reduce the parameter space, takinga = b.
This is a compromise choice since an independently increasing activitya leads, in general,
as will be seen later on, to a poorer generalization while the increase in the correlation
parameterb provides an improvement. Noting thatξµρ still takes the values±1 and 0, we
have the simplest possibility of exploring the generalization ability of the network when the
training is with small examples, i.e. with low-activity patterns.

The solution of the fixed-point equations yields mainly three phases: a generalization
(G) phase whereM > 0 andQ > 0, a chaotic (C) phase with self-sustained activity in
which M = 0 andQ > 0 and a zero (Z) or paramagnetic phase withM = 0 = Q. The
chaotic phase is the analogue of a spin-glass phase in a fully connected network. There
is also a retrieval phase for sufficiently small values ofα, in which M = O(b) while the
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Figure 1. Zero-temperature low-activity phase diagram in the concept ratioα against threshold
θ plane, for a three-state network withs = 20 examples and the activitya = b = 0.2, whereb

is the correlation between examples and a given concept. G, C, Z denote the generalization, the
chaotic and the zero phases, respectively, defined in the text. Full curves represent first-order
transitions, the broken curve represents a second-order transition and the dotted curve is the
locus of the optimal generalization overlapMopt.

overlap with a single example,m = O(1). This appears only within a small region of the
phase diagram and, for simplicity, we shall not be concerned with it in what follows.

The three phases we are interested in are shown in figure 1, for a typicals = 20 and
b = 0.2 whena = b. Each region is labelled with the possible phases that can appear
depending on the initial state of the dynamical variables. The full curves represent first-
order transitions, while the broken curve represents a second-order transition. The dotted
curve, Mopt, gives the threshold that optimizes the generalization overlap for a givenα.
There is a generalization phase within a finite range of threshold values and a limiting
critical concept ratioαc = α(θ), beyond which generalization is not possible for a given
number of examples and correlationb2.

The shape of the phase diagram and the existence of the various phase-transition lines
are similar to those in the retrieval problem [9], where a line for optimal retrieval has
also been found. The main new feature of our phase diagram is the existence of a stable
generalization phase in place of a retrieval phase over a considerable part of the phase
diagram. The reason for this is the dynamical outcome of stable symmetric mixture states
due to the training of the network with a sufficiently large number of correlated examples.
The extraction of the common features of the examples through these mixture states yields
now a finite overlap between the state of the network and each concept, if the random noise
produced by the other concepts is not too large.

As one would expect, even when there is a generalization phase, there could be a
competition for stability between this phase and the other ones, in particular with the chaotic
phase, unlessα(θ) is small enough. This is the case below the lower first-order transition
line where only the generalization phase is stable, besides the always possible Z phase.
Thus, the generalization dynamics of the network trained only with the lowest level of a
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set of correlated hierarchical patterns differs basically from the retrieval dynamics of the
network trained with uncorrelated patterns, which yields a retrieval phase over a large part
of the phase diagram.

To understand the role of the threshold, a distinction has to be made between moderately
high and low values ofα within the generalization phase. The line forMopt in the phase
diagram provides the boundary for this distinction. Consider first the case whereα = 0.4,
say, which is close to the maximum ratio of concepts for the presence of the generalization
phase when the threshold is set to zero. For such a high value ofα, the neurons that have
the lowest local fields are the most important ones in producing an error in the overlap
with a given concept, due to the random noise produced by the other concepts. The
effect of a finite threshold is to turn off those neurons and, eventually, an overlap on the
optimal generalization curve,Mopt, in figure 1 may be reached, with an appropriate value
of the threshold. Increasingly higher values of the threshold should start to deteriorate the
generalization ability of the network.

On the other hand, forα = 0.1 say, i.e. well below the value where the line forMopt

starts, the local fields should be less sensitive to the random noise produced by the other
concepts and the recognition of a concept may already be harmed by a small threshold.

Figure 2. Generalization errorε as a function ofθ for various values ofα, with the sames, a

andb as in figure 1. The minima inε corespond to points onMopt.

To judge the dependence of the generalization quality on the threshold we show in
figure 2 the generalization errorε, equation (8), for a given concept, with the sames andb

as in figure 1. The minima inε for eachα correspond to points on the line forMopt. The
best improvement due to the threshold is seen to appear for the larger values ofα, close to
the criticalαc.

In order to check if there is a significant and stable generalization phase, corresponding
to a finite basin of attraction of the G fixed point, we determined the basins of attraction of
the three fixed points in theM–Q plane, corresponding to the G, C and Z phases for typical
values of the parameters, and found that there is, usually, a large region of attraction of the
G phase within the region where the dynamical activityQ > M. Consistent with figure 2,



Generalization in a multi-state neural network 757

the G fixed-point appears well belowM = 1, indicating a not too good generalization
quality, unlessα is small. We also found that the Z phase has a small basin of attraction
and that the C fixed-point is a saddle-point, as in the retrieval problem for the three-state
network [11].

The generalization ability of a fully connected network with binary neurons is known to
depend crucially on the number of examples used in the training stage and on the correlation
between examples [5–7]. The symmetric mixture states are stabilized and the generalization
phase should appear either when the network has been exposed to a sufficiently large number
of examples or when the correlation between examples is large enough. If the thresholdθ is
small one would expect a continuous drop in the generalization error and for larger values of
the threshold eventually a critical numbersc of examples should be needed in order to have a
rapid decrease in the generalization error. Our results for the so-called generalization curves
in the extremely dilute three-state network, forα = 0.3 andb = 0.2, shown in figure 3 for
various values ofθ , show that this is precisely the case. As increasingly higher thresholds
tend to turn off larger portions of the active part of each neuron, a larger number of examples
is needed in order to generalize, except in the vicinity of the optimal generalization surface
in the (α, θ, s) space. This is the surface generated by the optimal generalization line,
Mopt, in figure 1 for varyings. Indeed, the generalization curves decrease slightly whenθ

increases from zero toθ ' 0.2 but, for clarity, this is not shown in the figure.

Figure 3. The generalization errorε as a function of the number of exampless, for various
values of the thresholdθ , whenα = 0.3 anda = b = 0.2.

A similar behaviour appears for the generalization error as a function ofb (the activity
or correlation parameter between examples and concepts) and, to emphasize this non-
monotonic dependence on the threshold for the larger values ofα, we show in figure 4
the results forα = 0.5 ands = 20 for various values ofθ . Although we have seta = b, we
conclude on the basis of what will be discussed below that, unless the correlation between
examples is large enough, there is no generalization due to the absence of stable symmetric
mixture states. It will be shown that it is not necessary to have at the same time an
increasingly large activitya. Note that the improvement withθ is not monotonic and that,
within certain limits, it is possible to reduce the generalization error for a given value ofb
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Figure 4. The generalization errorε as a function ofa = b, for various values of the threshold
θ , whens = 20 andα = 0.5.

by increasing the threshold. Note also that asθ increases the transition to the generalization
state becomes steeper and, forθ > 3, it is practically a first-order transition.

So far, we discussed our results for a network in the extremely dilute limit trained with
low-activity examples, in whicha = b 6 1. Two further aspects we consider next are,
first, the comparison of the generalization ability with that of the network trained with full-
activity examples, in whicha = 1, and second, the dependence ofε on an independently
varying activity unrelated to the correlation parameterb.

Figure 5. The generalization errorε as a function of the correlationb between examples
and a given concept, for the ‘low-activity’ (a = b) and for the full-activity (a = 1) network,
respectively, for two values of the thresholdθ , when s = 25 andα = 0.3. The full curves
correspond toθ = 0 (two-state neurons) and the dotted curves toθ = 1.
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The generalization error fora = 1 can be readily obtained and the comparison with the
results fora = b 6 1 is shown in figure 5, fors = 25, α = 0.3 and two values of the
threshold;θ = 0 (i.e. two-state neurons), given by the full curves, andθ = 1, given by the
dotted curves. For the values of the parameters that have been chosen, the generalization
error is already an increasing function of the threshold for the low-activity case, while it is
still a decreasing function whena = 1. The behaviour of the latter reverts, however, already
for θ ∼ 2 and the generalization error starts to increase thereafter. With these thresholds,
and even for larger ones, we checked that for a given correlation between examples the
generalization error for the low-activity case is always below that fora = 1.

Figure 6. The generalization errorε as a function of the activitya of the training examples for
fixed values of the threshold, as indicated, ands = 25, b = 0.3 andα = 0.3.

To demonstrate that a much better performance can be obtained by training the network
with low-activity examples, we show in figure 6 our results fors = 25, b = 0.3, α = 0.3
andθ between zero and 1.3. The effect of a low activity is to decrease both the main part
�(t) of the local field and the noiseω(t) term in equation (14). The low activity seems
to be more efficient on the noise and the network has a quite good generalization ability,
particularly for the lowest activities. For intermediate activities, the generalization ability
becomes poorer although it is more robust to a moderate increase in the threshold, as one
would expect. The generalization ability for the case of low activity is also sensitive to the
number of examples presented to the network. If this is below a critical number, there is
no generalization but it is quite good beyond that.

5. Concluding remarks

A neural-network model which is capable of inferring a representation for an extensive
number of full-activity prototypes from a finite set of examples of small size that have
been learnt with a generalized Hebbian rule, is studied in this paper in the extremely dilute
limit. Recurrence relations for the overlaps with the examples and with the concepts are
formally obtained for a general transfer function and worked out specifically for the case of
three-state neurons. The simplest structure of a two-level hierarchy of patterns is used, of
which only the lowest level is presented to the network in the training stage and the purpose
is to recognize the patterns of the higher level. The choice of binary concepts in the higher
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level is a natural one, in order to study the optimal ability of the network to build large
patterns.

The possibility of using a threshold in a network with three-state neurons to stabilize
the symmetric mixture states between a finite number of small patterns, in order to build
up large patterns, discussed some time ago in the context of the retrieval problem, has been
worked out here for the categorization problem. We have shown the interesting dependence
of the generalization ability on the relevant parameters and found that it is advantageous to
train a network with examples of low activity and to have a small-to-moderate threshold
that cuts the lowest local fields which are responsible for the main error in the generalization
process.

There are several interesting extensions of this work that may be considered. One is
the role of graded response transfer functionsFθ(x) with a continuous gain parameterθ ,
which may be more suitable from a biological point of view. Graded response functions are,
usually, monotonic but to appreciate their role it may be worth comparing the performance of
such a network with that obtained using non-monotonic functions. Because of the relatively
large number of parameters, we had to restrict the present work to a network in the extremely
dilute limit and we considered the generalization process only in the absence of synaptic
noise. Although we expect the latter to have only a damaging effect, it may still be worth
exploring this explicitly.

More interesting perhaps, but more difficult, is the extension to a fully connected network
which can have different behaviour from that of the network considered here [23]. An
analytical treatment is expected to require replica symmetry breaking, in particular for low
synaptic noise, since already the phase diagram for the generalization problem in the binary
network presents a re-entrant behaviour that is believed to be related to the assumption of
replica symmetry [7]. A recently worked out dynamics for a fully connected network can
perhaps be extended to multi-state neurons [24].
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